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OBJECTIVE—Defects in insulin/IGF-1 signaling stimulate mus-
cle protein loss by suppressing protein synthesis and increasing
protein degradation. Since an herbal compound, berberine, low-
ers blood levels of glucose and lipids, we proposed that it would
improve insulin/IGF-1 signaling, blocking muscle protein losses.

RESEARCH DESIGN AND METHODS—We evaluated whether
berberine ameliorates muscle atrophy in db/db mice, a model of
type 2 diabetes, by measuring protein synthesis and degradation
in muscles of normal and db/db mice treated with or without
berberine. We also examined mechanisms for berberine-induced
changes in muscle protein metabolism.

RESULTS—Berberine administration decreased protein synthe-
sis and increased degradation in muscles of normal and db/db

mice. The protein catabolic mechanism depended on berberine-
stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atro-
gin-1 not only increased proteolysis but also reduced protein
synthesis by mechanisms that were independent of decreased
phosphorylation of Akt or forkhead transcription factors. Im-
paired protein synthesis was dependent on a reduction in eIF3-f,
an essential regulator of protein synthesis. Berberine impaired
energy metabolism, activating AMP-activated protein kinase and
providing an alternative mechanism for the stimulation of atro-
gin-1 expression. When we increased mitochondrial biogenesis
by expressing peroxisome proliferator–activated receptor � co-
activator-1�, berberine-induced changes in muscle protein me-
tabolism were prevented.

CONCLUSIONS—Berberine impairs muscle metabolism by two
novel mechanisms. It impairs mitochonidrial function stimulat-
ing the expression of atrogin-1 without affecting phosphorylation
of forkhead transcription factors. The increase in atrogin-1 not
only stimulated protein degradation but also suppressed protein
synthesis, causing muscle atrophy. Diabetes 59:1879–1889,

2010

T
here is evidence that an herbal compound, ber-
berine, improves insulin-mediated glucose me-
tabolism and enhances insulin sensitivity in mice
(1–3). For example, Lee et al. (1) reported that

administering berberine to insulin-resistant db/db mice led
to a decrease in body fat and significant improvement in
glucose tolerance. Because catabolic conditions associ-
ated with insulin resistance can lead to progressive muscle
atrophy, we examined whether berberine improves mus-
cle protein metabolism. This was of interest because
successful inhibition of mechanisms causing loss of mus-
cle mass in diabetic mice might be extended to other
catabolic conditions that cause muscle atrophy (4–8).
However, we found that berberine actually promoted
muscle atrophy in both wild-type and db/db mice. This led
us to examine potential mechanisms causing berberine-
induced muscle atrophy.

Muscle atrophy induced by several catabolic conditions
(e.g., cancer, cachexia, diabetes, chronic kidney disease,
cardiac failure, sepsis) share a common group of biochemi-
cal and transcriptional adaptations (7–12). In atrophying
muscles, there is a higher level of expression of the E3
ubiquitin ligase, atrogin-1/MAFbx, which has been closely
linked to stimulation of muscle protein degradation by the
ubiquitin-proteasome system (UPS) (13–17). The mechanism
that increases atrogin-1 expression has been linked to defects
in insulin/IGF-1 signaling, specifically, suppression of insulin
receptor substrate (IRS)-1–associated phosphatidylinositol
3-kinase (PI3K) activity and a reduction in p-Akt (14–16). The
decrease in p-Akt, in turn, reduces phosphorylation of
the forkhead transcription factors (FoxOs) that can enter the
nucleus to stimulate atrogin-1 expression. The focus on
atrogin-1 in conditions stimulating muscle atrophy arises
because atrogin-1 expression causes a proportional increase
in muscle protein degradation (17).

Besides accelerated protein degradation causing muscle
atrophy, a decrease in protein synthesis will cause loss of
muscle protein. Mechanisms changing protein synthesis
include impaired insulin/IGF-1 signaling, reducing PI3K
and p-Akt activities (9). Another mechanism that can
impair muscle protein synthesis was recently reported by
Gwinn et al. (18). They found that a rise in p–AMP-
activated protein kinase (AMPK) inhibits the activity of the
mTOR complex I (TORC1). The mechanism for this re-
sponse involved phosphorylation of raptor, a regulatory
protein that is associated with mTOR. A third mechanism
that could impair muscle protein synthesis is suggested by
the recent report of Lagirand-Cantaloube et al. (19). They
found that atrogin-1 will conjugate ubiquitin to eIF-3f, an
essential factor regulating protein translation. Since atro-
gin-1 is exclusively expressed in muscle, it is possible that
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activation of atrogin-1 could reduce protein synthesis by
stimulating eIF-3f degradation by the UPS. If this were the
case, changes in protein degradation could be linked to
changes in protein synthesis.

We evaluated how berberine-induced mechanisms
would cause muscle atrophy in normal and db/db diabetic
mice. Specifically, we measured changes in muscle protein
turnover and evaluated the influence of atrogin-1 on these
processes. We also evaluated the influence of mitochon-
dria in berberine-induced muscle atrophy, because Turner
et al. (2) reported that treating cultured muscle cells with
berberine led to impaired mitochondrial function. We
found that berberine increased p-AMPK in muscle. There-
fore, we examined stimulation of mitochondrial function
with peroxisome proliferator–activated receptor (PPAR) �
coactivator (PGC)-1� to determine whether it would cor-
rect abnormalities in muscle protein turnover.

RESEARCH DESIGN AND METHODS

Animals. db/db and wild-type control mice (24 weeks old) were randomly
assigned to four groups: wild type, wild type � berberine (Sigma-Aldrich, St.
Louis, MO), db/db, and db/db � berberine. The studies were approved by the
Baylor College of Medicine Institutional Animal Care and Use Committee.
Berberine (5 mg/kg body wt) was injected intraperitoneally for 21 days, while
food eaten and weights were monitored (1). Subsequently, food was with-
drawn in the morning, and �6 h later mice were anesthetized (20 mg/kg
ketamine � 4 mg/kg xylazine) and arterial blood was obtained to measure
blood glucose and plasma insulin using the Accu-CHEK Advantage blood
glucose meter (Indianapolis, IN) and the Insulin Immunoassay 1-2–3 Kit
(American Laboratories, Windham, NH), respectively. The predominantly
oxidative red-fiber soleus, the predominantly glycolytic white-fiber extensor
digitorum longus (EDL), and the mixed-fiber lateral gastrocnemius muscles
were removed. Protein synthesis and degradation were measured in isolated
soleus and EDL muscles; the gastrocnemius was frozen in liquid nitrogen and
stored at �80°C. Tibialis anterior muscles were also removed, fixed at resting
length and imbedded in HistoPrep Frozen Embedding Media (Fisher Scien-
tific, Pittsburgh, PA).
Muscle protein synthesis and degradation. Rates of protein synthesis and
degradation were measured in isolated soleus and EDL muscles maintained at
resting length (4,10). Briefly, muscles were incubated for 30 min in 3 ml
Krebs-Henseleit bicarbonate buffer containing 0.5 mmol/l L-phenylalanine, 10
mmol/l glucose, plus 0.05 �Ci of L-[U-14C] phenylalanine (MP Biomedicals,
Solon, OH). After gassing with 95% O2/5% CO2, muscles were incubated for 30
min and then removed, blotted, and incubated for 2 h in fresh buffer that had
been regassed with 95% O2/5% CO2. The rate of protein synthesis was
measured as the incorporation of L-[U-14C] phenylalanine into muscle protein.
The rate of protein degradation was measured as the rate of release of
tyrosine into the media during the 2 h of incubation (4).

Rates of protein synthesis and degradation were also measured in C2C12
myotubes. The rate of protein synthesis was measured from the incorporation
of 3 �Ci L-[(3,5)-3H] tyrosine (MP Biomedicals) into cellular proteins during a
16-h incubation. Myotubes were then washed three times with ice-cold PBS
before adding 10% trichloroacetic acid to precipitate proteins. After three
additional PBS washings, the pellets were dissolved in 0.5 ml of 0.15 mol/l
NaOH, and the incorporation of radiolabeled tyrosine and protein content
(Bio-Rad DC protein assay kit; Bio-Rad, Hercules, CA) were measured. To
measure protein degradation, myotubes were prelabeled with -[(3,5)-3H]
tyrosine and incubated in DMEM media containing 2% horse serum. At
different times, the trichloroacetic acid–soluble radioactivity released from
proteins was measured to calculate the rate of protein degradation (10,17).
The measurements were made in triplicate and repeated at least twice.

To assess differences in cross-sectional areas of myofibers, 5-�m sections
of tibialis anterior muscles were stained with an anti-laminin antibody
(Sigma-Aldrich). The diameters of at least 300 myofibers (�100 magnification)
per tibialis anterior muscle was measured using Image J software (National
Institutes of Health, Frederick, MD). In studies of C2C12 myotubes, the
diameters of 200 myotubes were measured in at least 10 fields (�100
magnification) using Image J software.
Cell culture and Western blot analyses. C2C12 myoblasts were maintained
in DMEM with 10% FBS (HyClone, Logan, UT), penicillin (200 units/ml), and
streptomycin (50 �g/ml) (Invitrogen, Carlsbad, CA). At 90% confluence, the
media was changed to DMEM plus 2% horse serum (American Type Culture
Collection) to induce myotube formation. Berberine was prepared in DMSO

(25 mmol/l stock solution) and diluted to achieve different concentrations in
the media; control cells were treated with equal amounts of DMSO.

To knockdown atrogin-1, C2C12 myotubes were transfected with 6 �l of
smart pool Mafbx-32 siRNA (Dharmacon, Waltham, MA) diluted in 100 �l
siRNA transfection media (Invitrogen) for 30 min at room temperature.
Subsequently, transfected myotubes were incubated 5–7 h at 37°C. One
milliliter of DMEM plus 2% horse serum was added; the incubation was
continued for an additional 36 h; atrogin-1 knockdown was confirmed by
Northern blotting (10). To overexpress PGC-1�, we transfected C2C12 myo-
tubes with an adenovirus bearing PGC-1� for 36 h; control cells were treated
with an adenovirus expressing green fluorescent protein.

Lysates of C2C12 myotubes were prepared in radioimmunoprecipitation
assay buffer (20 mmol/l Tris, pH 7.5; 5 mmol/l EDTA; 150 mmol/l NaCl; 1%
NP40; 0.5% Na-deoxycholate; 0.025% SDS; 1 mmol/l Na-orthovanadate; 10
mmol/l NaF; 25 �mol/l �-glycerophosphate and 1 �mol/l leupeptin; 1 �mol/l
pepstatin; and 10 �mol/l aprotinin). After centrifugation at 15,000g for 15 min
at 4°C, Western blots were performed as described (4,7,10). Lysates of
gastrocnemius muscles were prepared from �50 mg muscle by homogenizing
in 0.5 ml lysis buffer (50 mmol/l Tris, pH 7.4; 1% NP-40; 0.25% Na-deoxycholate;
150 mmol/l NaCl; 1 mmol/l EDTA; 1 mmol/l phenylmethylsulfonyl fluoride; 1
�g/ml each of aprotinin, leupeptin, and pepstatin; 1 mmol/l Na3VO4; and 1
mmol/l NaF). Western blots were prepared from the supernatant obtained
after centrifuging at 16,000g at 4°C for 15 min.

The following antibodies were used in Western blots: eIF3-f from Rockland
Immunochemicals (Gilbertsville, PA) and p-Akt (Ser 437), Akt, p–forkhead box
class Os (FOXOs), p-p70S6K, p70S6K, p-AMPK (Thr172), AMPK, p-raptor(Ser
792), raptor, p-S6K1(Thr 389), and S6K1 from Cell Signaling (Beverly MA). The
PGC1-�, FOXOs, and glyceraldehyde-3-phosphate dehydrogenase (GADPH) anti-
bodies were from Santa Cruz Biotechnology (Santa Cruz, CA).
RNA and quantitative real-time PCR analyses. RNA from gastrocnemius
muscles or cultured cells was isolated (TRI reagent; Invitrogen) and Northern
blots were performed as described (4,10,14). �-32P dCTP–labeled cDNA probe
of atrogin-1 was synthesized using a random-primer labeling kit (GE Life
Science, Piscataway, NJ) and purified using G-25 columns (Roche, Indianap-
olis, IN). Signals were analyzed by autoradiography and expressed relative to
GAPDH.

For real-time PCR, 2 �g RNA was used for first-strand cDNA synthesis
using the SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen).
Real-time PCR was performed with iQSYBR Green Supermix reagents (Bio-
Rad) as described (20). We used the following primers: mouse atrogin-1/
MAFbx: forward, 5	-GCAAACACTGCCACATTCTCTC-3	 and reverse, 5	-
CTTGAGGGGAAAGTGAGACG-3	. Cytochrome C: forward, 5	-GCAAGCA
TAAGACTGGACCAAA-3	 and reverse, 5	-TTGTTGGCATCTGTGT AAGA
GAATC-3	. The mitochondrial atpase 5b: forward, 5	-ACTGTGT CCCGG
GCAAGAAAGATA-3	 and reverse, 5	-AAGGCTTG TTCTGGGAGATGGTCA-3	.
Quantum RNA18S primer (Ambion, Austin, TX) was used as the control.
Statistical analysis. Results are presented as means 
 SE. Statistical
analysis was performed by ANOVA followed by Tukey or Student-Newman-
Keul tests. P � 0.05 was considered statistically significant. Experiments were
repeated at least three times.

RESULTS

Berberine stimulates muscle atrophy in mice. When
wild-type or db/db mice were injected intraperitoneally
with 5 mg berberine/kg/day for 3 weeks, there was no
difference in food intake, but body and epididymal fat pad
weights decreased significantly compared with values in
saline-injected mice (supplemental Fig. 1A–C, available at
http://diabetes.diabetesjournals.org/cgi/content/full/
db10-0207/DC1). Blood glucose levels in 6-month-old db/
db mice were threefold higher than in littermate wild-type
mice (18 
 4.2 vs. 6 
 2.3 mmol/l; P � 0.01, n � 12;
supplemental Fig. 1D), while plasma insulin was about
threefold higher in db/db mice (supplemental Fig. 1E).
Berberine administration to db/db mice significantly de-
creased blood glucose but did not change plasma insulin
levels.

Berberine administration significantly decreased mus-
cle mass in wild-type and db/db mice, as indicated by
lower weights of soleus and EDL muscles compared
with muscles of saline-treated mice (Fig. 1A and B).
Muscle weights were corrected for tibia lengths rather
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than body weight since db/db mice are disproportion-
ately obese. Berberine-induced loss of muscle mass was
confirmed when we measured the average cross-sec-
tional areas of myofibers in muscles of berberine-
treated wild-type and db/db mice and compared results
of saline-treated mice (Fig. 1C). In wild-type mice, the
average myofiber sizes were 2094.8 
 106.3 �m2 in
untreated mice vs. 1,736 
 208.3 �m2 in berberine-
treated mice. In db/db mice, the average values were
1607.7 
 107.2 �m2 in untreated mice vs. 1,200 
 78.3
�m2 in berberine-treated mice (P � 0.001; n � 6 in each
group). There also was a leftward shift in the distribu-
tion of myofiber sizes in muscles from berberine-treated
compared with PBS-treated mice, consistent with loss
of muscle mass (Fig. 1D). Thus, berberine caused mus-
cle atrophy in both wild-type mice and db/db mice.
Berberine suppresses protein synthesis and stimu-
lates protein degradation in muscle. To examine why
muscle atrophy occurred, we measured components of
protein metabolism in isolated soleus and EDL muscles of

wild-type and db/db mice. In berberine-treated mice, pro-
tein synthesis was significantly lower in both soleus and
EDL muscles compared with values in saline-treated mice
(Fig. 2A and B). In berberine-treated wild-type and db/db
mice, muscle protein degradation in soleus and EDL
muscles were significantly higher than rates measured in
either group of mice that was treated with saline (Fig. 2C
and D).
Berberine increases atrogin-1 expression in muscle.
In wild-type and db/db mice, we explored whether activa-
tion of the UPS contributes to berberine-induced changes
in muscle protein metabolism. We measured atrogin-1
expression because an increase in atrogin-1 is related to
the rate of protein degradation in muscle (17). We found
that berberine treatment of wild-type or db/db mice signif-
icantly upregulated atrogin-1 mRNA in muscle (Fig. 3A).
Since one mechanism that activates atrogin-1 is impaired
PI3K/Akt signaling (15,16,21), we evaluated the levels of
p-Akt and phosphorylated FoxOs in muscle. The levels of
both p-Akt and p-FoxOs were lower in muscles of un-
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FIG. 1. Berberine (BBR) causes muscle atrophy in wild-type (Wt) and db/db mice. A and B: Wild-type and db/db mice were treated with berberine
(5 mg/kg) for 3 weeks. The weights of the soleus and the extensor digitorum longus (EDL) muscles were normalized by the lengths of tibia as
db/db mice gain weight disproportionally (n � 8 in each group; means � SE). C: The cross-sectional of tibialis anterior muscles in wild-type and
db/db mice, with and without berberine treatment. Myofibers were outlined using dystrophin staining. D: the distribution of myofiber sizes in
muscles from untreated and berberine-treated mice. Data were obtained from six mice in each group.
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treated db/db mice compared with the values present in
wild-type mice; berberine treatment did not change p-Akt
or p-FoxOs further (Fig. 3B and C). Another stimulator of
atrogin-1 expression in muscle is p-AMPK (22). When we
measured p-AMPK, we found a higher level in muscles of
berberine-treated wild-type or db/db mice (Fig. 3D).

C2C12 myotubes were treated with berberine to deter-
mine whether berberine will directly affect atrogin-1 ex-
pression and muscle protein metabolism. Increasing
concentrations of berberine significantly increased atro-
gin-1 mRNA in mytotubes, and it caused a progressive
decrease in myotube diameters (Fig. 4A) (supplemental
Fig. 2). In agreement with the results we obtained in
muscles of wild-type and db/db mice, the addition of
berberine did not change the levels of p-Akt or p-FoxO1,
p-FoxO3�, or p-FoxO4 (Fig. 4B). Likewise, berberine in-
creased the level of p-AMPK in cultured muscle cells
(Fig. 4C).

Berberine-induced changes in muscle protein metabo-
lism in wild-type and db/db mice. Similar events occurred
in myotubes treated with berberine; there was a significant
decrease in protein synthesis and an increase in protein
breakdown compared with results from untreated myo-
tubes (Fig. 4D and E).
Atrogin-1 mediates berberine-induced atrophy of
myotubes. To examine if atrogin-1 impairs muscle protein
metabolism in cultured myotubes, we used an siRNA

approach and measured protein synthesis and degrada-
tion. At 36 h after transfection with atrogin-1 siRNA, the
mRNA of atrogin-1 was 90% lower in berberine-treated
myotubes compared with control myotubes (Fig. 5A).
Atrogin-1 knockdown resulted in an increase in the diam-
eters of berberine-treated myotubes, indicating that the
muscle atrophic responses were inhibited (Fig. 5B). As
expected, atrogin-1 knockdown significantly inhibited pro-
tein degradation in berberine-stimulated myotubes (Fig.
5D). Unexpectedly, we found that the decrease in protein
synthesis induced by berberine was no longer present in
cells with atrogin-1 knockdown. Specifically, berberine
treatment of control myotubes produced a 28.6% (P �
0.05) decrease in synthesis compared with values in un-
treated myotubes (Fig. 5C). Thus, atrogin-1 mediates the
berberine-induced changes in both protein degradation
and synthesis in muscle cells.
Berberine decreases eIF3-f and protein synthesis by
an atrogin-1–dependent mechanism. In C2C12 myo-
tubes, knockdown of atrogin-1 significantly blocked the
berberine-induced decrease in protein synthesis (Fig. 5C).
We proposed that this response could be linked to changes
in the protein synthesis mediator, eIF3-f, because berber-
ine also decreased the level of eIF3-f in muscles of
wild-type and db/db mice (Figs. 2A and B and 6A). To
examine this possibility, we measured eIF3-f protein in
berberine-treated myotubes and found that it was 50%
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FIG. 2. Berberine (BBR) suppresses protein synthesis and stimulates protein degradation in muscle of wild-type (Wt) and db/db mice. A and B:
Protein synthesis was measured from the rate of incorporation of L-[U-14C] phenylalanine into isolated, incubated soleus and EDL muscles.
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lower than in atrogin-1 knockdown myotubes. The in-
crease in eIF3-f level was associated with increased pro-
tein synthesis (Figs. 5C and 6B). Thus, the stimulation of
atrogin-1 expression by berberine can regulate muscle
protein metabolism in two ways: it stimulates protein
degradation by the UPS and reduces eIF3-f to suppress
protein synthesis.

Results in Fig. 5C show that the knockdown of atrogin-1
did not completely restore protein synthesis, suggesting
that berberine activated other protein synthetic mecha-
nisms. One mechanism could involve AMPK-dependent
phosphorylation of raptor (the regulatory associated pro-
tein of mTOR) at Thr792 (18). This phosphorylation of
raptor impairs mTOR activity, resulting in decreased acti-

vation of p-S6K1 and, hence, muscle protein synthesis. In
studies of berberine-treated C2C12 myotubes, we also
found evidence for activation of the same pathway.
Berberine increased phosphorylation of raptor and de-
creased the level of p-S6K1 (Figs. 6C and D). Similar
responses were found in berberine-treated wild-type and
db/db mice (Fig. 6E and F).
Overexpression of PGC-1� prevents berberine-induced
muscle atrophy. Why are berberine-induced changes in
muscle AMPK levels associated with changes in protein
metabolism? Krawiec et al. (22) reported that stimulation of
AMPK activity by administration of AICAR can increase
atrogin-1 expression. Since AMPK is a sensor of cellular
energy metabolism, the adverse influence of berberine might
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involve mitochondrial dysfunction. For example, it has been
reported that berberine interferes with mitochondrial com-
plex I function while augmenting the content of uncoupling
proteins 2 and 3 (2,23). To examine this possibility, we
overexpressed the mitochondrial biogenesis factor, PGC-1�,
in C2C12 myotubes (Fig. 7A). As expected, there was in-

creased gene expression of cytochrome C and atpase 5b,
along with a decrease in p-AMPK (Fig. 7B–D) (24). In
myotubes expressing PGC-1�, there was marked inhibition
of the increase in atrogin-1 that berberine induces. In addi-
tion, eIF3-f protein was almost returned to the control level
despite the presence of berberine (Fig. 7E and F). These
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changes induced by PGC-1� result in an increase in the sizes
of berberine-treated myotubes compared with control myo-
tubes (Figs. 7G). Our results link muscle cell atrophy to a

dual influence of atrogin-1 on protein turnover but also
indicate that abnormal mitochondrial energy production can
cause muscle cell atrophy.
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DISCUSSION

The herbal derivative, berberine, has been shown to lower
blood glucose and lipid levels in animal models of diabe-
tes, leading to the conclusion that berberine can improve
insulin sensitivity (1,3,25). Since defects in insulin/IGF-1

signaling (i.e., decreased activity of PI3K and p-Akt) cause
muscle protein losses in catabolic conditions, we hypoth-
esized that berberine could improve muscle protein me-
tabolism when there was insulin resistance (4,10,20,26).
Although berberine did ameliorate hyperglycemia and
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reduce fat mass in db/db mice as a model of insulin
resistance (20), it also caused muscle atrophy in both
wild-type and db/db mice (Fig. 1). The muscle atrophy
occurring in berberine-treated wild-type or db/db mice was
associated with stimulation of atrogin-1 expression (Figs.
3A). This led us to uncover two new atrogin-1–linked
mechanisms that could play a role in the muscle atrophy
that occurs in other catabolic conditions. Specifically, we
found that the increase in atrogin-1 not only accelerated
protein degradation in muscle but also suppressed protein
synthesis. The latter mechanism involved promotion of
eIF3-f degradation, reducing its level in muscle (Fig. 6A).
In fact, knockdown of atrogin-1 blocked both the increase
in protein degradation and the decrease in protein synthe-
sis stimulated by berberine (Fig. 5). Second, we found
evidence that impaired mitochondrial function induced by
berberine not only resulted in an increase in muscle AMPK
levels but also stimulated atrogin-1 expression. This path-
way leading to atrogin-1 expression and abnormalities in
muscle protein metabolism was blocked in cells express-
ing PGC-1� (Fig. 7).

Experimental results obtained in wild-type and db/db
mice can be influenced by changes in systemic factors
(e.g., circulating hormones or cytokines as well as dietary
and environmental influences). To exclude these factors,
we also studied responses of C2C12 differentiated muscle
cells or myotubes and found that berberine directly
changes muscle protein metabolism (Fig. 4).

The link between atrogin-1 and protein degradation is
well known (17). For example, we have demonstrated that
an increase in Ser307 phosphorylation of IRS-1 in muscle
of db/db mice is linked to an increase in atrogin-1 and
protein degradation in muscle (20). In those studies,
administration of the PPAR-� agonist, rosiglitazone,
blocked the increase in Ser307 phosphorylation of IRS-1,
raising the p-Akt level with suppression of atrogin-1 and
muscle atrophy. Moreover, we and others find that berber-
ine does not change Ser307 phosphorylation of IRS-1 in
muscle, nor does it influence PPAR-� gene expression
(3,27).

What could be the berberine-induced mechanism under-
lying the changes in muscle protein metabolism? One
possibility is that berberine suppresses the insulin/IGF-1/
Akt pathway. This would reduce phosphorylation of FoxO
transcription factors and promotion of atrogin-1 expres-
sion in muscle and protein degradation (14–16). However,
berberine treatment of wild-type or db/db mice did not
decrease p-Akt or p-FoxO1 levels (Fig. 3B and C). Another
possibility is that berberine stimulates atrogin-1 expres-
sion via activation of AMPK. Krawiec et al. (22) treated
mice and muscle cells with AICAR and found an increase
in p-AMPK that led to increased atrogin-1 expression. This
is relevant because Yin et al. (3) reported that 5 �mol/l
berberine increased the phosphorylation of AMPK (p-
AMPK) in cultured muscle cells. We confirmed that treat-
ment of cultured CC12 myotubes with 3 �mol/l berberine
or administration of berberine to mice increased p-AMPK
and atrogin-1 expression in muscle (Figs. 3A and D and 4A
and C). The increase in p-AMPK induced by berberine
could also influence muscle protein metabolism by inter-
fering with the activity of S6K1 through a mechanism
involving phosphorylation of raptor (18,28). We explored
this possibility and found increased levels of p-raptor with
a decrease in p-S6K1 (Fig. 7). Based on the changes in
protein synthesis occurring in berberine-treated muscle
cells, we estimate that atrogin-1 contributes �70% of the

decrease based on results from knocking down atrogin-1.
Thus, we estimate that the inhibition of TORC1/S6K1
contributes �30% of the decrease in protein synthesis.

The finding that p-AMPK in muscle rises with berberine
treatment is consistent with induction of abnormal energy
metabolism, yet both blood glucose and fat stores are
reduced (supplemental Fig. 1). Others (2) have attributed
to these results to berberine-induced inhibition of mito-
chondrial complex I and, possibly, induction of uncoupling
proteins. Our results support a role for impaired energy
metabolism in creating berberine-induced abnormalities in
protein metabolism. When we treated cells with PGC-1�,
we found evidence of increased mitochondrial biogenesis
that was associated with correction of the abnormalities in
muscle protein metabolism (Fig. 7). Future work will
require determining how variations in mitochondrial en-
ergy metabolism in muscle actually change atrogin-1 ex-
pression and how this influences protein synthesis and
degradation.

We recognize that our findings from experiments utiliz-
ing mice or cultured cells may not reflect events occurring
in patients with type 2 diabetes. Reports of protein turn-
over in diabetic or insulin-resistant patients find no muscle
wasting unless the patients are elderly or sedentary (29–
32). Even though obese patients with type 2 diabetes were
shown to exhibit some impairment in ATP production, it
has also been found that intensive insulin therapy did not
change leucine kinetics when compared with results
achieved with conventional insulin therapy (33). However,
our results do indicate that antidiabetes drugs can cause
unexpected consequences, including changes in protein
metabolism.

In summary, we have uncovered two factors that affect
the control of muscle protein metabolism. First, a de-
crease in energy metabolism in muscle can stimulate
protein losses by raising protein degradation and sup-
pressing protein synthesis. Second, an increase in atro-
gin-1 expression not only is associated with increased
protein degradation by the ubiquitin-proteasome system,
but it also can interfere with protein synthesis by promot-
ing the degradation of factors regulating synthesis.
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